Úvodní stránka

Fotosyntéza

V 17. a 18. století se začali vědci hlouběji zabývat ději, které probíhají v rostlinách. K prvním patřili Johannes van Helmont a Joseph Priestley. Důležitým výsledkem jejich zkoumání bylo zjištění, Fotosyntézaže v zelených částech rostlin dochází k výměně plynů, kyslíku a oxidu uhličitého. Rozhodující objev však učinil holandský lékař Jan Ingenhousz (1730 - 1799), který našel zásadní souvislost mezi touto výměnou a slunečním zářením. Prokázal, že působením světla přijímají rostliny oxid uhličitý a "vydechují" kyslík, ve tmě pak v rostlinách probíhá opačný proces. Jev dostal jméno fotosyntéza.
 
Už před více než 2,5 miliardami let začaly v prvních primitivních organismech, například v sinicích, působením slunečního světla chemické přeměny organických sloučenin. Byl tak "nastartován" nejdůležitější biochemický proces na Zemi - fotosyntéza (řecké slovo fos = světlo). Z hlediska fyziky je fotosyntéza děj, při kterém si rostliny vyměňují látky a energii se svým okolím. V listech rostlin se část energie slunečního záření (jen asi 1 - 2 %) mění na chemickou energii, která se ukládá do molekul glukózy (cukru). Buňky listů obsahují zelené barvivo chlorofyl, schopné dopadající světlo absorbovat. I když jde při fotosyntéze o složité biochemické reakce (probíhají ve dvou stupních), pokusíme se objasnit aspoň jejich podstatu.
  • Rostliny přijímají z půdy vodu (H2O) a ze vzduchu oxid uhličitý (CO2).
  • Působením světla dochází v listech k reakci, při níž vzniká kyslík a glukóza C6H12O6.
  • Kyslík O2, uvolňovaný do vzduchu, dýchají živočichové a vydechují oxid uhličitý CO2.
  • Energeticky bohatá glukóza (cukr) se následně přeměňuje na látky potřebné k růstu rostliny.

I když se jedná o složitý a ne úplně objasněný biochemický děj, můžeme ho zjednodušeně popsat chemickou rovnicí:
6CO2 + 12H2O + světlo ----> C6H12O6 + 6H2O + 6O2

Tento cyklus důkladně prozkoumal americký biochemik, syn ruských emigrantů, Malvin Calvin (1911 - 1997) a za své výzkumy získal v roce 1961 Nobelovu cenu. Bez fotosyntézy by nemohl existovat život na naší Zemi - rostliny by nerostly, živočichové by ztratili potravu, v atmosféře by přibývalo oxidu uhličitého a ubývalo kyslíku. Do atmosféry se ročně uvolňuje asi 200 miliard tun kyslíku, nezbytného pro dýchání. Současně vzniká každoročně asi 150 miliard tun organických látek, tzv. biomasy. Během stamilionů let z ní vznikla fosilní paliva, využívaná dnes jako nejrozšířenější (bohužel neobnovitelný) zdroj energie pro vytápění, dopravu i výrobu elektrické energie. Téměř všechny živé organismy na Zemi využívají k životu chemickou energii, která vznikla přeměnou energie slunečního záření zelenými rostlinami v procesu fotosyntézy.
 
Proč jsou listy zelené
Chlorofyl pohlcuje část slunečního záření v modrofialové části spektra a část v oblasti oranžovočervené. Světlo ze střední části spektra se chlorofylem prakticky nepohlcuje, ale od listů se odráží. V tomto světle jsou hlavně složky modrozelené, zelené a žluté. Naše oko tyto barvy "složí" na výslednou zelenou barvu. Původ jména chlorofyl je odvozen z řeckých slov chloros = zelený a phyllon = list. Chlorofyl